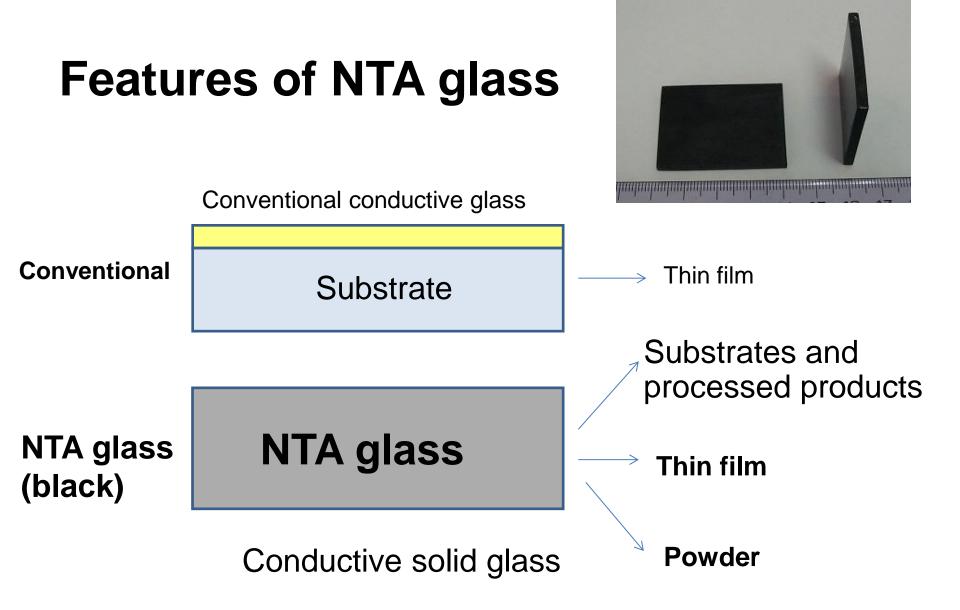
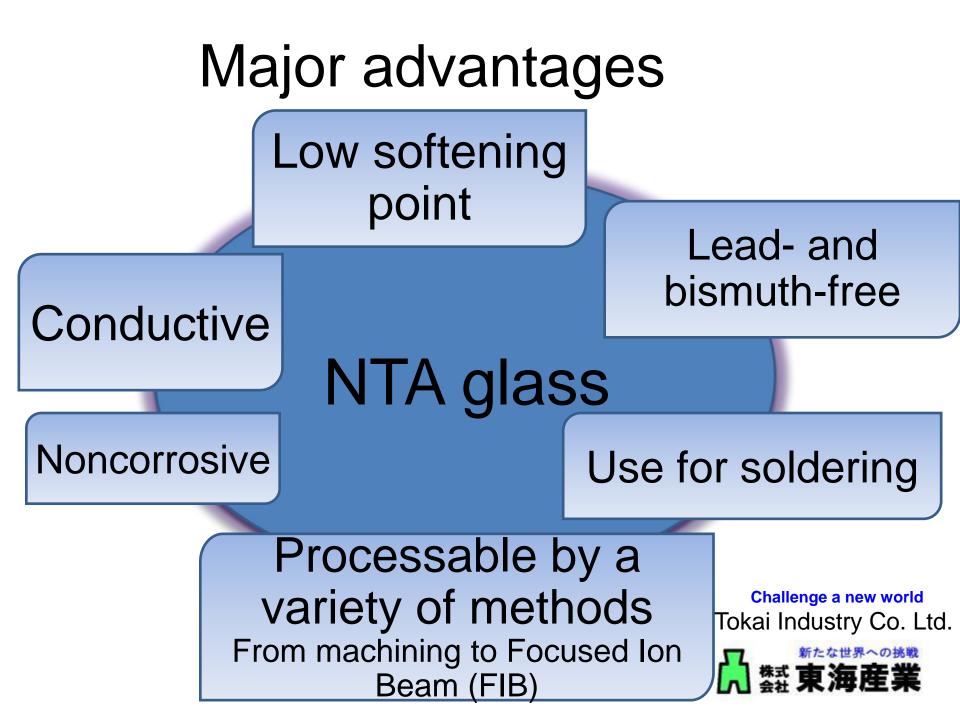
Introduction to conductive glass (NTA glass) and its application products

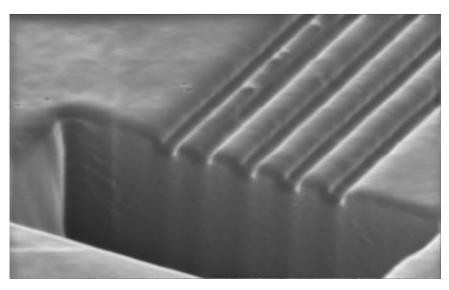
Art Beam Co. Ltd.


Conductive glass (NTA glass®) <u>Nano Technology Assorted Glass</u>


Japanese Patent No. 3854985 (applied for 2001, granted 2006) "Vanadate glass and its manufacturing method" Patent holder: Tetsuaki Nishida (Professor, Kinki University, Faculty of Humanity-Oriented Science and Engineering) License granted (No. 8389, registered in the Patent Registry on January 15, 2007)

"NTA glass"—Registered trademark (registered in 2006 by Tokai Industry) Registration number: 50099023

> Kinki University Nishida Laboratory

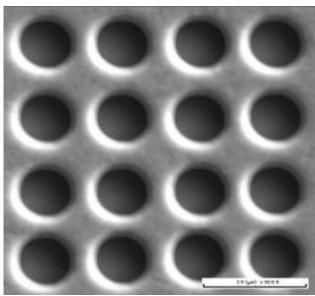


Properties	of NTA glass	(standard) and comparison	References: Properties of glass
		Note	(Source: "Rikagaku Jiten")
Electrical resistivity	$30 \ \Omega \ cm \ or \ less$	10 ⁻⁴ Ω cm or less depending on constituents and formula	
Glass transition point	400 °C		
Deformation point	460 °C		500 °C - 700 °C
Expansion coefficient	9.32 x 10 ⁻⁶ /K	20 °C - 300 °C	0.5 - 20 x 10 ⁻⁶ /K
Hardness	460 kg/mm ²	Approx. 5.5 (Mohs hardness)	5 - 7 (Mohs hardness)
Transmittance	0 %	200 nm - 2,400 nm	
Reflectivity	17-13 %	Compared to aluminum with reflectivity taken as 100% 350 nm - 750 nm	
	12 %	Compared to aluminum with reflectivity taken as 100% 750 nm - 2,600 nm	
Thermal conductivity	0.88 W/m∙K	At 26 °C	
Thermal diffusivity	0.363 mm²/s	At 26 °C	
Specific heat (heat capacity)	0.642 J/g⋅K	At 26 °C	
Density	3.78 g/cm ³	At 26 °C	2.2 - 6.3 g/cm ³
Young's modulus	81.6 - 85.0 Gps		5 - 9 Mps
Modulus of rigidity	32 Gpa		
Poisson's ratio	0.286		

Focused Ion Beam (FIB) micromachining

Micromachining at the order of 10 nm Aspect ratio 1:10 High-speed machining (at more than five times the speed of aluminum material)

Cross-view image: Pattern of 100 nm width, 200 nm depth


Machining conditions:

Accelerating voltage of 40 kV, current of 11 pA/cm²

Application in MEMS and nano imprint fields

Application to nano imprint

FIB machining of NTA glass **Resin coating** Imprinting Pattern

Main material for nano imprint technology

Glass powder

(1) Glass frit for metal paste

(2) NTA glass paste

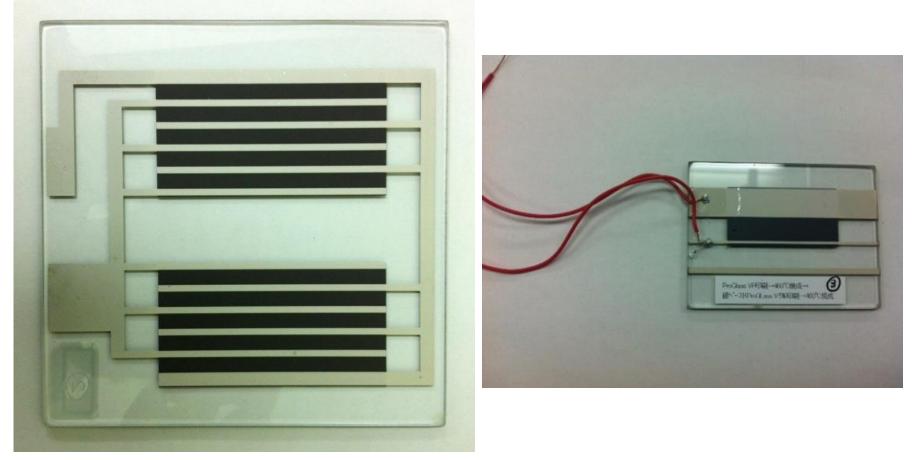
(1) Glass frit for metal paste

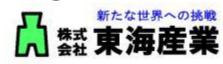
- Low softening point, lead- and bismuth-free -

Glass composition	Composite oxide of V, Ba and Fe
Properties	Black powder
Mean particle diameter	2.5-3.0 (μm)
Linear expansion coefficient	85-105 (x 10 ⁻⁷ / °C)
Uses	Electrodes, sintering aids for electrodes, conductive bonds, antistatic agents, etc.

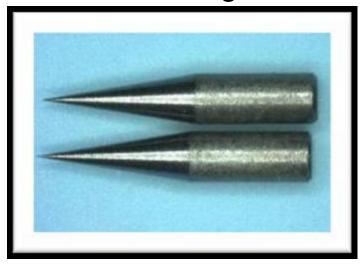
(2) NTA glass paste (Pro Glass VP)

Properties	Blackish brown paste
Viscosity	30 - 80 (Pa·s)
Application method	Screen printing
Recommended drying temperature	130 °C -150 °C for 10 to 20 minutes
Recommended standard operating temperature	Temperature rise/fall: 20 °C - 40 °C per minute Peak temperature: Maintained at 460 °C - 510 °C for 5 to 10 minutes
-	

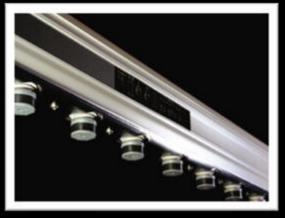

Applications of NTA glass paste Encapsulant and sealant for LSI, etc.


Conductive and noncorrosive

Application of NTA glass paste: Heat glass

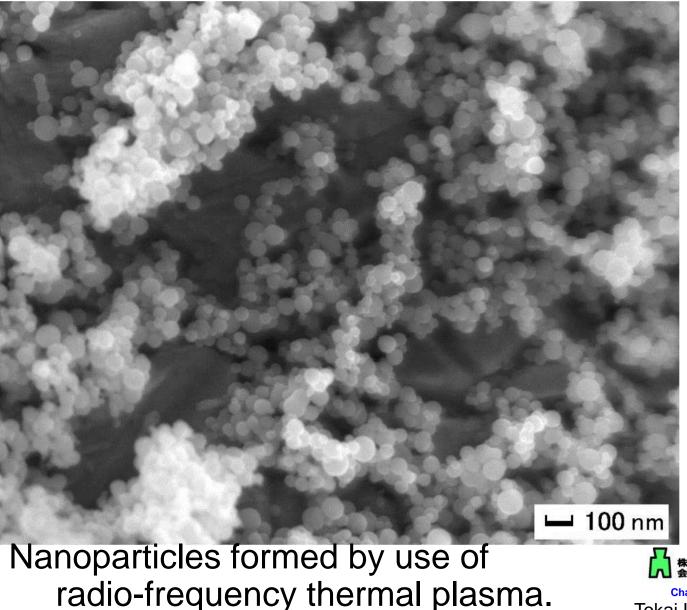


Conductive, noncorrosive, used for soldering



Other applications

Example of machining products: Ionizer discharge nozzle



- Conductive
- Noncorrosive (no dust produced)

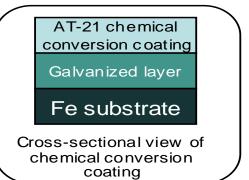
NTA glass nanoparticles (spherical, 100 nm or less)

Challenge a new world Tokai Industry Co. Ltd.

たな世界への地

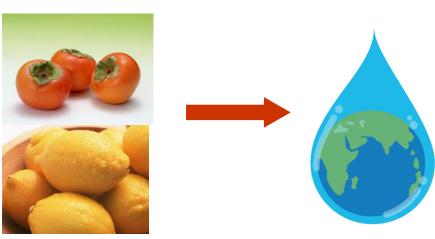
Offering dispersion samples tailored to customer's needs

Types and applications of MSCoating films


	Ti (titanium) coating	Si (silicon) coating
Aims	Anti-abrasion	Anti-corrosion, anti-erosion
Appearance		
Cross-sectional image	Tic layer Substrate S45C	Si layer Substrate SUS304
Applications	Molds, jigs, turret punch press and chucks	Anti-corrosion/Anti-erosion parts
Metal coating	* Thickness: 5-15 μm * Hardness: 1,200-2,500 HV	* Thickness: 5-10 μm * Hardness: 1,000 HV
	* Surface roughness: 6-20 μmRz	* Surface roughness: 1-4 μmRz

Chromium-free chemical conversion coating "AT-21"

Chromium-free chemical conversion coating "AT-21" is an environmentallyfriendly coating liquid that forms an anti-corrosive film on zinc and zinc alloy plates without the use of chromium compounds.


Advantages of AT-21 coating

- Environmentally-friendly ⇒ Chromium-free coating
- Anti-corrosive ⇒ Equal to trivalent chromium coating
- Cost⇒ More cost-effective than trivalent chromium coating

The major constituents of AT-21 are tannin and citric acid. Tannin is made from persimmon juice, and has anti-corrosion and antiseptic effects. This makes AT-21 an environmentally-friendly coating.

We look forward to doing business with you.

Art Beam Co. Ltd.

Joint development with Tokai Industry Co. Ltd.